metal-organic papers

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Zhao-Peng Deng,^a Shan Gao^a and Seik Weng Ng^{b*}

^aCollege of Chemistry and Materials Science. Heilongjiang University, Harbin 150080, People's Republic of China, and ^bDepartment of Chemistry, University of Malaya, Kuala Lumpur 50603, Malavsia

Correspondence e-mail: seikweng@um.edu.my

Key indicators

Single-crystal X-ray study T = 295 KMean σ (C–C) = 0.003 Å Disorder in main residue R factor = 0.031 wR factor = 0.093 Data-to-parameter ratio = 14.0

For details of how these key indicators were automatically derived from the article, see http://journals.jucr.org/e.

Diaguabis(4-formylbenzoato-kO)bis(1H-imidazole- κN^3)nickel(II)

The title compound, $[Ni(C_8H_5O_3)_2(C_3H_4N_2)_2(H_2O)_2]$, is isostructural with the manganese analogue. The Ni atom, which lies on a centre of inversion, is coordinated by two imidazole and two water ligands, as well as by the formylbenzoate groups, in an all-trans octahedral geometry.

Comment

The first example of a metal derivative of 4-formylbenzoic acid is the manganese derivative, which was characterized as the diaquabisimidazole complex (Deng et al., 2006), where the metal shows an all-trans octahedral coordination. The title nickel analogue, (I), is isostructural (Fig. 1); the bond dimensions in the two complexes are nearly identical. Similarly, the coordinated water molecules engage in hydrogen bonding (Table 2) to furnish the same type of three-dimensional network as formed by the Mn complex.

Experimental

Manganese diacetate tetrahydrate (0.125 g, 0.5 mmol) was added to an aqueous solution (10 ml) of 4-formylbenzoic acid (0.15 g, 1 mmol) and imidazole (0.068 g, 1 mmol). The pH value of the mixture was about 5. The solution was allowed to evaporate at room temperature; green prismatic crystals separated from the filtered solution after several days. CH&N elemental analysis calculated for C₂₂H₂₂N₄NiO₈: C 49.9, H 4.2, N 10.6%. Found: C 49.9, H 4.2, N 10.7%.

Crystal data [Ni(C₈H₅O₃)₂(C₃H₄N₂)₂(H₂O)₂] V = 557.14 (4) Å³ $M_r = 529.15$ Z = 1 $D_{\rm x} = 1.577 {\rm Mg m}^{-3}$ Triclinic $P\overline{1}$ a = 5.6143 (2) Å Mo Ka radiation b = 8.0757 (4) Å $\mu = 0.93 \text{ mm}^{-1}$ c = 12.8208 (5) Å T = 295 (2) K $\alpha = 73.995 (1)^{\circ}$ Prism, green $0.35 \times 0.26 \times 0.18 \text{ mm}$ $\beta = 86.114 (1)^{\circ}$ $\gamma = 87.038 \ (1)^{\circ}$

© 2006 International Union of Crystallography All rights reserved

m2422 Deng et al. • $[Ni(C_8H_5O_3)_2(C_3H_4N_2)_2(H_2O)_2]$ doi:10.1107/S1600536806034738

Received 29 August 2006

Accepted 29 August 2006

Data collection

Rigaku R-AXIS RAPID IP diffractometer ω scans Absorption correction: multi-scan (*ABSCOR*; Higashi, 1995) $T_{\min} = 0.729, T_{\max} = 0.851$

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.031$ $wR(F^2) = 0.093$ S = 1.212542 reflections 182 parameters H atoms treated by a mixture of independent and constrained refinement

Table 1

Selected geometric parameters (Å, °).

Ni1-N1 Ni1-O1	2.071 (2) 2.125 (1)	Ni1 - O1w	2.093 (1) 88.23 (6) 86.61 (5) 93.39 (5)
$N1-Ni1-O1$ $N1-Ni1-O1^{i}$ $N1-Ni1-O1w$	92.51 (5) 87.49 (5) 91.77 (6)	$\begin{array}{c} N1-Ni1-O1w^{i}\\ O1-Ni1-O1w\\ O1-Ni1-O1w^{i} \end{array}$	

5506 measured reflections

 $R_{\rm int}=0.018$

 $\theta_{\rm max} = 27.5^{\circ}$

2542 independent reflections

 $w = 1/[\sigma^2(F_0^2) + (0.0555P)^2]$

+ 0.0472P] where $P = (F_o^2 + 2F_c^2)/3$

 $(\Delta/\sigma)_{\text{max}} = 0.001$ $\Delta\rho_{\text{max}} = 0.49 \text{ e} \text{ Å}^{-3}$

 $\Delta \rho_{\rm min} = -0.40 \text{ e } \text{\AA}^{-3}$

2334 reflections with $I > 2\sigma(I)$

Symmetry code: (i) -x + 1, -y + 1, -z + 1.

Table 2

Hydrogen-bond geometry (Å, $^{\circ}$).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdot \cdot \cdot A$
$O1w - H1a \cdots O1^{ii}$	0.84 (1)	2.10(1)	2.868 (2)	153 (2)
$O1w - H1b \cdots O2^{i}$	0.84 (1)	1.81 (1)	2.636 (2)	169 (3)
N2-H2n···O2 ⁱⁱⁱ	0.85 (1)	2.33 (2)	3.061 (2)	144 (3)
$N2\!-\!H2n\!\cdot\!\cdot\!\cdot\!O3^{iv}$	0.85 (1)	2.45 (3)	3.041 (3)	127 (3)
Symmetry codes: (i	-r+1-v+	-1 - z + 1 (ii)	-x+2, -y+1	1 - 7 + 1 (iii)

Symmetry codes. (i) -x + 1, -y + 1, -z + 1, (ii) -x + 2, -y + 1, -z + 1, -x + 1, -y + 2, -z + 1; (iv) x - 1, y + 1, z - 1.

The formyl group is disordered over two sets of atom positions; the site occupancy factors refined to 0.679 (7):0.311 (6). The carbonbound H atoms were positioned geometrically (C-H = 0.93 Å) and

Figure 1

The molecular structure. Displacement ellipsoids are drawn at the 50% probability level, and H atoms are drawn as spheres of arbitrary radii. The minor disorder component is not shown. [Symmetry code: (i) 1 - x, 1 - y, 1 - z.]

were included in the refinement in the riding-model approximation, with $U_{\rm iso}({\rm H})$ set to $1.2U_{\rm eq}({\rm C})$. The amino and water H atoms were located in a difference Fourier map, and were refined with a distance restraint of N-H = O-H = 0.85 (1) Å.

Data collection: *RAPID-AUTO* (Rigaku Corporation, 1998); cell refinement: *RAPID-AUTO*; data reduction: *CrystalStructure* (Rigaku/MSC, 2002); program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *X-SEED* (Barbour, 2001); software used to prepare material for publication: *SHELXL97*.

We thank Heilongjiang Province Natural Science Foundation (No. B200501), the Scientific Fund for Remarkable Teachers of Heilongjiang Province (No. 1054 G036) and the University of Malaya for supporting this study.

References

Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.

Deng, Z.-P., Gao, S. & Ng, S. W. (2006). Acta Cryst. E62, m2106-m2107.

Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.

Rigaku Corporation (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.

Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.

Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.